

### MISR Albedo and Cloud Height Changes

Roger Davies

Physics Department, The University of Auckland, New Zealand

Thanks: Catherine Moroney, Veljko Jovanovic, Dave Diner, Norman Loeb

# outline: a talk in three parts

- SW and LW time series from MISR
  - 13 years, and counting
- sampling artifacts
  - present and absent
- comparisons with CERES-Terra

# Terra climate data records

- MISR stereo heights
  - self-consistent: 3/2000 present
  - O(10<sup>8</sup>) samples per month
  - 2.2 km horizontal resolution
  - 500 m (rms) vertical resolution
  - global sampling error:

≈30 m/month

≈7 m/year geometrically derived no calibration drift

- MISR multiangle albedos
  - TOA expansive albedo
  - O(10<sup>5</sup>) samples per month
  - 35 km horizontal resolution
  - global sampling error:

≈0.002/month

≈0.0005/year

on-board calibration stable to 1% over mission lifetime

- CERES LW and SW daytime flux
  - 1° daily global sampling error

 $\approx 0.3 \text{ W m}^{-2}/\text{month}$ 

< 0.1 W m<sup>-2</sup>/year

progressively more and more valuable with time

### **Annual Mean Effective Height from MISR**

$$H = \int f(h)h \, dh$$



March 2000 — February 2010: the first 10 years

### Interannual Fluctuation of Effective Height



# Correlation of anomalies in cloud-top height with anomalies in sea level pressure



sea level pressure from NCEP reanalysis cloud-top heights from MISR 8/5/2013

Mar 2000-Feb 2010

# Correlation of anomalies in cloud-top height with anomalies in surface temperature



surface temperature from NCEP reanalysis cloud-top heights from MISR 8/5/2013

Mar 2000-Feb 2010

# Correlation of anomalies in cloud-top height with anomalies in Southern Oscillation Index



SOI from Australian Bureau of Meteorology cloud-top heights from MISR
8/5/2013

Mar 2000-Feb 2010

Davies and Molloy, GRL 2012









#### decadal trends in zonal effective height 2000–2012 (m/decade)





# what can we learn from CERES?

- Terra window fluxes
  - daytime only, viewing zenith within ±25° to match MISR





# what about albedos?

- MISR measures spectral radiances only
  - 9-angle integration
  - still need angular model for azimuthal fill
  - green band, local time anomalies



## summary

- global annual sampling by MISR and CERES is much better than the observed interannual variability
- the first two years of Terra had issues with spacecraft attitude and ephemeris that may affect the time series
- MISR: global effective height (especially low lat) and global albedo (high N lat) have decreased slightly during 13 years.
- next step: examine zonal differences and resolve CERES/MISR differences

thank you